COURSE ID SHEET

Course No.	5290 NTUA
Semester:	8 Core X Elective Specialization
Title:	DESIGN II
. .	
Aim:	The aim of this course is to:
	 develop skills and knowledge in advanced topics of chemical process design.
	• familiarize with process synthesis and a model-based analysis of integrated processes.
	• familiarize with the use of superstructure optimization and software to support
	decisions.
	• promote creative and innovating thinking in the formulation of design solutions.
Content:	Advanced topics in the selection of chemical reactors.
	Advanced topics in separation, introduction and use of Residue Curve Maps.
	Production scheduling and planning of batch processes.
	Retrofitting applications.
	Model-based synthesis and superstructure optimization:
	Basic concepts and technology.
	• Synthesis of utility and energy integration networks.
	Integrated separation and separation sequencing.
	State-task networks for scheduling and planning.
	Water and wastewater network with reuse, regeneration and recycle.
	water and wastewater network with reuse, regeneration and recycle.
Hours per semester:	LECTURES 85 EXERCISES LABORATORY 30 HOMEWORK 60 TOTAL HOURS: 175
Student	The evaluation of the students will be done through:

The Final Grade results as follows: Final Grade = 0.5 x (FE) + 0.5 x (DP)

• A Final (written) Examination (FE), and

• A mandatory Design Project (DP).

performance/

evaluation: