COURSE ID SHEET

Course No.	5301 NTUA								10,4	
Semester:	8,10	Con	re		E	lectiv	ve		Specialization	X
Title:	DISPERSION OF POLLUTANTS									
Aim:	Addressing the environment as pollution recipient. Presentation of the principles governing the dispersion of pollutants into air, water and soil. Application of computational simulation models for the calculation of pollutants' concentration.									
Content:	 The environment as pollution recipient. Mechanisms and processes in Nature. Dispersion in air: Calculation of pollutants transport from various sources. Computational models of dispersion in air. Application of dispersion models software. Dispersion in water and soil: Transport in water: Completely-mixed systems. Partially-mixed systems. Conventional pollutants, dissolved oxygen, pathogens, toxic substances. Rivers – Streeter-Phelps models. Lakes – eutrophication. Transport in soil: underground water. Pollution and transport of dissolved pollutants. Non-saturated zone. 									
	water. P	OHUti	on and trans	port (oi dissoived	poll	utants. No	on-satura	teu zone.	
Hours per semester:	LECTURES	24	EXERCISES	-	LABORA- TORY	36	HOME- WORK	115	TOTAL HOURS: 1	175

Student performance/ evaluation:

The evaluation of the students will be done through:

- A Final (written) Examination, and
- Exercises (E).

The Final Grade results as follows: Final Grade = $max\{(FE), [0.7 \text{ x } (FE) + 0.3 \text{ x } (E)]\}$